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STRUCTURE OF TENSOR FIELDS OF THE SECOND RANK 
GENERATED BY AN INCOMPATIBILITY OPERATOR* 

S.E. BUGAENKO 

There is considered the structure of fields of symmetric tensors (11) generated by the 
incompatibilityoperator Ink acting according to the formula Inkqs V X 9 X V. This 
operator which is closely related to internal stresses in bodies was considered by 
Kroner /l/ in application to the continuum theory of dislocations. Allied to the 
study of the structure of tensor fields is the problem of their restoration accord- 
ing to a given incompatibility and divergence as well as the decomposition into in- 
compatible and compatible strain. For a sufficiently smooth Krdner tensor field 
that vanishes at infinity, by starting from the analogy with the properties of a 
vector field, it is shown that such a decomposition exists and is unique. In the 
supplement to /2/, this problem is solved in practice, where an effective algorithm 
is developed for the decomposition into appropriate invariant components by using 
projection operators. Analogous questions are examined below in applicationtofin- 
ite domains as well as in connection with the decompositionofatensorintodeviatoric 
and spherical parts. 

1. Let a field of a syurnetric tensor q,called compatible if Inkq=O, be given in adomain 
V with boundary I; all the remaining tensors are incompatible. 

Definition 1.1. We call an incompatible tensor sin incompatibility tensor if it is a 
solution of the system 

Inks(x)==%(x), divs(x)=O, XCZV (1.1) 

which becomes identically zero together with the tensor x. 
By solving this system, the incompatibility tensor sis restored by its image X obtained 

by using the operator 1nk;any (symmetric) tensor with zero divergence can emerge as theimage. 
The operator Res,inverse to Ink is thereby determined by tensors with zero divergence. The 
operators Res and Ink are mutually reciprocal in the set of such tensors. 

The Definition 1.1 introduced differs from the traditional definition /l-4/ whenrepres- 
entability in the form s =Inkq is the basis for the classification. Both definitions are 
equivalent in tensor fields given in all space and regular at infinity. However, in the case 
of afinitedomain fields of compatible tensors with zero divergence exist which shouldbe re- 
ferred to incompatibility tensor fields according to the traditional definition. Definition 
1.1 eliminates this incorrectness. 

We introduce the following notation 

where x, y are radius-vectors of the running and integration points. We correspondingly de- 
note the Newtonian potential by I'Iv(pq). In the case of integration over an infinite domain, 
we replace the subscript V by 00. We denote the external normal to the boundary I'by n and 
the Laplace operator by A. 

Let divq = 0, and we examine divIIv. If the tensor 11 or its external vector n. q van- 
ishes on I, then divII, = 0; this is not so in the general case. 

We obtain an expression analogous to II" and possessing zero divergence. To do this, we 
find the deformation tensor q, possessing zero divergence, outside the volume V by means of 
the external vector X=n * q given on I,and we continue II in all space to infinity in aregular 
manner, i.e., we take the solution q of the following problem for X@ V 

Inkq(x)=O, divq(x)=G; n.q(x)r=X(x).xEr (1.2) 

as the continuation of qle. 
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This problem reduces to a problem in the vector field u(x) 

Au + grad div u = 0, $++nXrotu/r=X (1.3) 

which agrees with the second boundary value problem of elasticity theory for zero Poisson's 
ratio. As is known /4/, the solution of the external problem (1.31 exists, is unique, and is 
regular at infinity. Hence the continued tensor 

q>xEv 

%= Q,X@V 1 

will satisfy the condition divq,__=O in all space, will diminish at the rate I I x plm !x! I( 
nf = const at infinity, and its external vector on r will not undergo discontinuities (the 
theorem on divergence can therefore be applied). The potential n,(m) constructred on its 
basis has zero divergence; its contraction in the domain V 

nV,(rqcJ=Km(rq3~ x=V (1.4) 

will also possess this property. 

Lemma 1.1. A regular solution at infinity for the external problem (1.21 is a diviator 
if the boundary condition 1 is the external deviator vector. 

Proof. Because of the first equation (1.2) there exists a vector u(x)such that q(x)= 
defu(x), where def is the operator for the formulation of the deformation tensor in the displace- 
ment vector. The result known in elasticity theory of the harmonicity of the spherical part 
of the deformation tensor follows from (1.3). Let us formulate the external boundary value 
problem for it that corresponds to the problem under consideration: at infinity the spherical 
tensor should be regular and should correspond to the boundary condition x on l'e We represent 
the vector x in the form of a sum of tangential xr and xn normal components to r . It is 
easy to see that XI and X, depend, respectively, only on the deviator and the spherical part. 
If X,,(X)= 0 then we obtain a harmonic problem with zero value on the boundary and regularity 
condition at infinity for the spherical tensor. Such a harmonic tensor is evidently identical 
to zero. 

2. We show that the field of the tensor q is restored uniquely within the finite domain 
V as a solution of the problem 

Inkq (x) =x(x), divq(x)=v (x), XEV; n.qIr=x(x), x~r (2.1) 

We shall seek the general solution in the form of the sum S-f% f g of particular solu- 
tions of the first two equations and the general solution of the homogeneous system for the 
appropriate boundary condition. 

We find the tensor s as a particular solution of the problem (1.1). To do this we use 
the identity /2/ 

Aa = def (211 - grad div) div + Ink Ink 
(2.2) 

Existence of a tensor h such that s=Inkh follows from the second equation in (1.1). 
Then it is satisfied indentically, and if we set divh=O, then by using (2.2) we can con- 
clude that the first equation in (1.1) takes the form A2h= X. Its particular solution that 
satisfies the condition divh=O is a potential of the type (1.4), say. We then obtain the 
solution of the problem (1.11 in the form 

s (x) = Ink IImv (rx,) (2.3) 

The solution (2.3) is obtained by analogy with finding the vortex component of the vec- 
tor field /5/ when the particular solution of the system rotu(x)=v(x),divu(x)= 0,x= V,similar 
to the problem (1.11, is sought by using a vector analysis identity, A= graddiv-rotrot analog- 
ous to (2.2) by assuming u=mtw and divw=O. 

It should be noted that the method recommended in /6/ that does not require satisfaction 
of the condition divw=O, does not permit solution of the problem in the general case. Thus 
if the solution is selected in the recommended form 

w = -II" (pv) + grad+, A$ = div II, (pv) 

then because Aw= -v the equality Agradlp=Oshould be satisfied, which will result in a con- 
dition on the vector v 

grad div II, (pv) = 0 

This is related to the fact that not every harmonic vector must be a potential. 
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We find the tensor % as a particular solution of the problem 

Ink % (x) = 0, div % (x) = v (x), x E V (2.4) 

To do this, we decompose the vector v into vortex v, and potential vg parts s/5/,and we 
seek % in the form of the corresponding sum % = %, + %,. Because of the linearity of the 
problem, (2.4) decomposed into two. We set %,= 2 defs,,where u, = rotz and v, = rotw. This 
results in a particular solution in the form %, = 2 def(rotz), X = IIv(pw).Correspondingly, we 
set %, = defu,, where uI = Vm and vII = VI@. This results in a particular solution of the form 
gg = i%p, cp =YIv (pl#). - - 

Let us introduce the notation: n. S Ir = Xl(X), n * 5 lr = x2 (x), XS (x) = x (X) - Xl (X) - G(X). 
By direct substitution it can be seen that the sum s +% will satisfy the equations in (2.1) 
and there remains to find q as a solution of the internal problem (1.2) under the boundary 
condition n . q (x) Ir = X8 w This latter reduces to (1.3), where the second equationin (1.2) 
assures the existence of the solution /4/, which is unique for the tensor 4. 

Therefore, the solution of the problem (2.1) is obtained in the form 

q=s+%+q (2.5) 

where s is the inccnnpatibility tensor, and %and q are strains. The tensor qwhich is compat- 
ible, can be represented in the form q = Inkb, which would result in the introduction of the 
Definition 1.1. 

If the required tensor qE C@)(V). then also the tensors s,% EC(*)(I')since they are ob- 
tained by differentiating potentials with densities of appropriate smoothness. Hence s and 
% are single-valued functions and only the tensor q can be the source of the multivaluedness 
(for a multiconnected surface domain V). 

The representation (2.5) simultaneously solves the problem of decomposing the arbitrary 
tensor qinto the incompatibility tensor s and the compatible tensor %‘= % i-q,by also veri- 
fying the validity of the Kraner decomposition q = s $ f' /l/ for finite domains. To do this 
it is sufficient to take s from (2.3) and to define %'as the difference q-s. 

3. The operator Ink is a second-order matrix linear differential operator, and it is 
consequently evident that there exist among the tensors those that annihilate them becauseof 
single or repeated multiple application. Tensors also exist which do not annihilate them at 
all /2/. 

We call the tensor q(p) a nilpotent element of the operator Ink if a natural number p 
exists such that InkPq(p) = 0. We call the least natural number the height of the element?(p). 

Compatible tensors have a height one, while the incompatible are greater than one. For 
convenience, we do not ascribe the index p = 00 to nilpotent elements. The operator Ink low- 
ers while the operator Res raises the height of a nilpotent element by one. 

We call the set of all nilpotent elements of height p the nilpotency class P. The pos- 
sibility of decomposition by class is eivdent since the sets of elements of differentheight 
do not intersect by pairs. Using tensors with components from polynomials of finite degree, 
the example can be presented of a tensor of any previously assigned height. By comparing the 
class with its height, all the classes can be numbered. Therefore, the operator Ink generat- 
es the decomposition of a linear space of tensor fields into a countable set of nilpotency 
classes. 

The set of nilpotent tensors is a subspace of the linear tensor space. The nilpotency 
class 1 is the kernel of the operator Ink,and therefore, is also a subspace. The remaining 
classes are not subspaces since they do not contain the zero element. 

We examine subgroups of an additive group of linear spaces of tensor fields. If neces- 
sary, we predefine the appropriate sets by azero tensor so that they would form a subgroup. 
Let H,S and Kbe subgroups of incompatible tensors q, the tensors of incompatibility s , 
and the tensors x with zero divergence. Furthermore, let H(p),S(p) and Q be subgroups of 
nilpotent tensors q(p) of height not greater than p,incompatibility tensors s(p)of height Pt 
and compatible tensors q with zero divergence. We denote the remaining compatible tensorsby 
%; they are characterized by the property div%#O and form the subgroup % (if they are 

supplemented by the zero tensor). Evidently K = S @ Q, H(1) = Q @ E. 
In application to the tensor q(2)the representation (2.5) takes the form q(2) = s(2)+ 

9 + %=@) + q(1) , and the direct sum 
H (2) = S (2) @ Q @ E = S (2) @ H (1) (3.1) 

corresponds to it because of the single-valuedness. 

Lemma 3.1. InkS(2) =Q, S(2) =ResQ. 

PrOOf. The second relationship is obtained from the first iftheoperator Besworks. To 
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obtain the first relationship, we act on S(2) with the operator Ink andon Q withtheoperator 
RSS. From the definition of the height of an element we arrive at the inclusions InkS(2)c 

Q,ResQGS(Z), we act on the second with the operator Ink and compare with the first. 

Lemma 3.2. There exists the isomorphism S (2)rz Q. 

Proof. It follows from (3.1) and Lemma 3.1 that the operator Ink generates the homo- 
morphism H(2)+QCH(I), where the kernel of the homomorphism is H (1). Then by the theorem on 
homomorphisms, the isomorphism Q=H (2)/H(i) holds. On the other hand, theisomorphism S(2)= 
H (2)/H (1) follows from (3.1)‘ which indeed proves the lemma. 

Theorem 3.1. For any natural p> 1 there exists an isomorphism S(p)zQ. 

The assertion is proved by induction whose basis is Lemma 3.2. The method is analogous 
to the proof of Lemma 3.1. 

The following generalization of Lemma 3.1 can be obtained as a corollary: 

Ink S (p) = S (p - I), S (p) = Res S (p - I), p > 2 

Theorem 3.2. For every natural. number p>l the following representation is valid 

H (P) = S @) @ H (P - 1) 

Successive application of this theorem permits obtaining the relationship 

H (PI = & S (4 0 H (1) 

from which the following result 

Only the subgroups B andS (co&&e part in the invariant decomposition proposed in the 
supplement to /2/. The subgroup Z consists of deformation tensors; they belongtothekemel 
of the operator Ink and are not images of any tensors since they cannot be represented in the 
form 8=1&q. The subgroup S(=o)consists of non-nilpotent incompatibility tensors and is 
characterized byanautomorphism generated by the operator Ink. 

4. The height index will be omitted in the notation below, with the sole exception of 
the special case p = 1. We shall utilize the single-valued decomposition of the arbitrary 
tensor qinto the deviatior q* and spherical q" parts 

q=q*+q" (4.1) 

We use the known identity 171 

xlvv..q6- VV.q-q.VV+Aq+VVtrq-Atrq6 (4.21 

Here 6 is the unit tensor, tr and V are operators of taking the trace of a tensor and of 
covariant differentiation, If q=sSS,then V.s =O and (4.2) takes the form x--As+ 

VV tr s - A tr s& Expanding x and s into the sum (4.1) and using the notation (x)* az Ink s*: 

(x)@= Inks", we obtain from the latter relationships 

(+*=A@, (#=VVtrs" -+A&'& (4.3) 

x*=As* +VVtrs-+ Afrs6, x0=--At& (4.4) 

In the general case, we obtain from (4.2) 

x*=+vv..q6- VV.q-q.VV~Aq*~VVtrq.-~At~q~ 

x"=+(VV..q-Atrq)6 

(x)*=VV..q*h-VV.q*-q*.VV+Aq* 

(X)"=+VVtPq"-Attrq'6) 

(4.5) 

(4.6) 

We examine the action of the operator Ink on the deviator and spherical incompatibility 
tensors. It follows directly from (4.4) that the operator Ink takes the incompatibility dev- 
iator S* into the deviator x*. If s = s-&hen if follows from the condition V . s = 0 that 
V trs' = 0,and then we obtain (x)* = (w)D = 0 from (4.3), i.e. s"EQ. 
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Therefore, no spherical incompatibility tensors exist; thedeviator of the incompatibility 
tensor is always different from zero. 

Let sES, we decompose it into the sum (4.1). Since s"e s then also S* @SS. Hence, 
either the incompatibilitytensor is a deviatior or its deviatoric and spherical parts are not 
incompatibility tensors. It follows from (4.4) and (4.5) that in the general cases of SEs 
or ~EH the operator Ink takes them over into xEK,which are neither deviators nor spher- 
ical tensors. 

It can be concluded on the basis of Lenana 1.1 that the operator Rea restores the incom- 
patibility deviator S* from the deviator X*. The subspace of incompatibility deviators is 
invariant for the operators Res and Ink. The deviator representation q* z s* + g'* is 

valid for an arbitrary deviatoric. 

5. We decompose ~EH into the sum (4.1) and we use the notation 
Inky'. 

(x)+ z Inkq*, (x)” = 
Because of the linearity of the operator Ink, we have x = (x)* + (x)O, and correspond- 

ingly 
K = InkH, (K)* = InkH*, (K)" = Ink H", K = (K)* _t (K)O 

We define the subgroup Ein H(1) in the form of the direct sum 

(5.1) 

E = E” $ E” (5.2) 

where E+ and r are subgroups of compatibile deviators e* and spherical tensorse'.Thesubgroup 
E is a part of the kernel H(1)of the operator Inkwhich is absolutely compatible in thesense 
that any element eEE has compatible and deviator and spherical parts. The subgroup E in- 
tersects Q and 8. 

The subgroup E” is quite lean since it follows from (4.6) that VVtre' = 0. As is known 
/S/, in a Cartesian system this is a linear function of the coordinates. 

The single-valuedness of the decomposition (4.1) permits writing H(1) = H*(l)@ H"(1). 
Since EC H(1), E* C H* (I), E”C H'(1), then taking account of (5.2) we conclude that the decom- 
position 

H (1)/E = H* (1)/E* @ H" (1)/E" (5.3) 

is valid for the factor-group H/E 
We consider the subgroups H*(1) and H"(1). The deviators II* (1)E H* (1) can be compat- 

ible (belong to E*)or incompatible. We form co-sets of incompatible deviators in the sub- 
group E* and we take an arbitrary representative Q* from each class. The set obtained is 
isomorphic to the factor-group H*(l)IE* and, therefore, itself forms a group Ho*CH*. We 
proceed analogously with the subgroup H"(1). Therefore, the isomorphisms H* (1)/E* N Ho+, 
Ho (I)/&? N HOD. Hence, by virtue of (5.3), a subgroup H,E H(l)/E exists in the subgroupH(l). 
Correspondingly, the decompositions 

are valid. 

Ho = Ho* @ Ho", H* (1) = Ho* @ E*, H"(1) = Ho0 @ E', (5.4) 
H(1) = Ho@ E 

It follows from the first relationship that every q. ~H,,which is represented in conform- 
ity with (4.1) in the form 91~ = wb* +%", possesses the property 

Ink%" = --InkIlo* (5.5) 

The subgroup HO" consists of incompatible spherical tensors rlo" for which incompatible 
deviators 'Qo* corresponding to the condition (5.5) exist. The imbeddings Ho*C H* andHo"C 
H" are obvious. Meanwhile, it follows from the Lemma 5.1 to be presented below that the ele- 

ments Q, are determined for any IW'E Ho. This permits the conclusion that Ho0 = H",and cor- 
respondingly, the first relationship in (5.4) can be written in the form Ho = Ho* @ Ho. It 
hence follows that (K)oC(K)*. 

Indeed, let us consider the action of the operator Ink on the subgroupinthe last de- 
composition. Mapping by using Ink transfers H” into (KY and Ho* into a certain subgroup (K)o*, 
here HoCH(*) goes over into zero. But this means that the subgroups (K)O and (K)o* consist 
of mutually opposite elements , i.e., agree as sets and groups. Since (K)o* C (K)*, then (K)'C 
(KY. Hence, because of the last relationship in (5.1) we conclude that K = (K)*- Therefore, 

there is proved the theorem. 

Theorem 5.1. The set of tensor fields with zero divergence agrees with the set of 
images (by using Ink) of tensor-deviators. 

For incompatibility tensors this result is formulated in the form s = (s)* C (K)*. 
By condition (5.5) the element Q in a given spherical part Q" is determined just tothe 
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accuracy of @* EE*. Tndeed, (5.5) means that qO = dofu, and giving the spherical part of 
the tenSor is equivalen& to the condition divu, = tr@ for the veCtor ug. For a sfngle- 
valued restoration of the vector S, it is necessary to give its rotation and boundary con&- 
tion &so, which is associated wfth the elements e* and q*-_ The potential part af *he vector 
wB is related to the change in volume J9/, hence, fcr definiteness, we set rutus =r 0. Any 
$EH" can be the Spherical part of Q" Since a particular solution of the system div Ug = 

trq”,rotuo m 0 exists for any piecewise-continuously differentiable right side. Therefore there 
is proved the lemma. 

single-valuedly definea the element 90'62 HOC H (1). 
The vector uO = Vg, fs continuous and piecewise-ocntinuously differentiable, meaning that 

it is also Single-valued in the whole space of functions, 
The faPallawing theorem illustrates Theorem 5.1 and can be of interest in connection with 

problemS of the mecha.nicS af incompressibible media. 

Theo?XXR 5*2* Every piecewise conttiu~s1-f afeeYmti&Ze zensor q In *he ~#~~~~ fr Es-i 

be decomposed into an inc@npatible devSatror and a compatible part. 

PraoP, We define the element %G&, in the dacromposition (4,3) by the spherical part 
qc such that qO = %* + q', and expressing q" from this t substitute it into the decamposition 

1. 

2. 
3. 

4. 
5. 
6, 

7, 
8. 

9. 

The tMz.hor is graixsful to T.V. Lokhin for discussing the results and for useful comments, 
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