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STRUCTURE OF TENSOR FIELDS OF THE SECOND RANK
GENERATED BY AN INCOMPATIBILITY OPERATOR

S.E. BUGAENKO

There is considered the structure of fields of symmetric tensors {n} generated by the
incompatibility operator Ink acting according to the formula Inkn=V XnXV. This
operator which is closely related to internal stresses in bodies was considered by
Kroner /1/ in application to the continuum theory of dislocations. Allied to the
study of the structure of tensor fields is the problem of their restoration accord-
ing to a given incompatibility and divergence as well as the decomposition into in-
compatible and compatible strain. For a sufficiently smooth Kréner tensor field
that vanishes at infinity, by starting from the analogy with the properties of a
vector field, it is shown that such a decomposition exists and is unique. In the
supplement to /2/, this problem is solved in practice, where an effective algorithm
is developed for the decomposition into appropriate invariant components by using
projection operators. Analogous questions are examined below in application to fin-
ite domains as well as in connection with the decomposition of a tensor into deviatoric
and spherical parts.

1. Let a field of a symmetric tensor 1, called compatible if Inkm=0, be given in a domain
V with boundary TI'; all the remaining tensors are incompatible.

Definition 1.1. We call an incompatible tensor s in incompatibility tensor if it is a
solution of the system

Inks (x) =%(x), divs(x)=0, x&V (1.1)

which becomes identically zero together with the tensor x.

By solving this system, the incompatibility tensor s is restored by its image % obtained
by using the operator Ink;any (symmetric) tensor with zero divergence can emerge as the image.
The operator Res, inverse to Ink is thereby determined by tensors with zero divergence. The
operators Res and Ink are mutually reciprocal in the set of such tensors.

The Definition 1.1 introduced differs from the traditional definition /1l —4/ when repres-
entability in the form s =Ink7n is the basis for the classification. Both definitions are
equivalent in tensor fields given in all space and regqgular at infinity. However, in the case
of afinite domain fields of compatible tensors with zero divergence exist which should be re-
ferred to incompatibility tensor fields according to the traditional definition. Definition
1.1 eliminates this incorrectness.

We introduce the following notation

r=[x—yj Hv(rn)E—%S S Sr‘q(y)dVy, p== I_Xi—)’l

v !

where X,y are radius~vectors of the running and integration points. We correspondingly de-
note the Newtonian potential by IIy (pm). In the case of integration over an infinite domain,
we replace the subscript V by o0. We denote the external normal to the boundary I by mn and
the Laplace operator by A.

Let dive =0, and we examine divIly. If the tensor m or its external vector n -1 van-
ishes on T, then divIly = 0; this is not so in the general case.

We obtain an expression analogous to Ily and possessing zero divergence. To do this, we
find the deformation tensor q, possessing zero divergence, outside the volume V by means of
the external vector § =mn:%N given on [;and we continue % in all space to infinity in a regular
manner, i.e., we take the solution q of the following problem for xXe¢£ V

Inkq(x)=0, divg(®)=0; n.q(x)r =7 (x), x&T (1.2

as the continuation of %,.
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This problem reduces to a problem in the vector field u (x)

Au -+ graddiva =0, —z:—+%nxrotulr=x (1.3)

which agrees with the second boundary value problem of elasticity theory for zero Poisson's
ratio. As is known /4/, the solution of the external problem (1.3) exists, is unique, and is
regular at infinity. Hence the continued tensor

{n, xeV
o= MNes X$V

will satisfy the condition div1, =0 in all space, will diminish at the rate |[|X[Me(x)|<<
M = const at infinity, and its external vector on I will not undergo discontinuities (the
theorem on divergence can therefore be applied). The potential II.(mM.) constructred on its
basis has zexro divergence; its contraction in the domain V

HYo (rMeo) = o (Meo)s xeV (1.4)
will also possess this property.

Lemma 1.1. A regular solution at infinity for the external problem (1.2) is a diviator
if the boundary condition Y% is the external deviator vector.

Proof. Because of the first equation (1.2) there exists a vector u(x)such that ¢ (x)=
def u (x), where def is the operator for the formulation of the deformation tensor in the displace-
ment vector. The result known in elasticity theory of the harmonicity of the spherical part
of the deformation tensor follows from (1.3). Let us formulate the external boundary value
problem for it that corresponds to the problem under consideration: at infinity the spherical
tensor should be regular and should correspond to the boundary condition % on I+ We represent
the vector ¥ in the form of a sum of tangential #%; and %» normal components to I'. It is
easy to see that % and X, depend, respectively, only on the deviator and the spherical part.
If %n(x) =0 then we obtain a harmonic problem with zero value on the boundary and regularity
condition at infinity for the spherical tensor. Such a harmonic tensor is evidently identical
to zero.

2. We show that the field of the tensor M is restored uniquely within the finite domain
V as a solution of the problem

Inkn(x)=%(x), divn(x)=v(x), xEV; n-g)r=19(x), xT (2.1)

We shall seek the general solution in the form of the sum s+ § 4+ q of particular solu-
tions of the first two equations and the general solution of the homogeneous system for the
appropriate boundary condition.

We find the tensor s as a particular solution of the problem (1.1). To do this we use
the identity /2/

A? = def (2A — grad div) div + Ink Ink (2.2)

Existence of a tensor h such that s=Inkh follows from the second equation in (1.1).
Then it is satisfied indentically, and if we set divh =0, then by using (2.2) we can con-
clude that the first equation in (l.1l) takes the form A?h=x. Its particular solution that
satisfies the condition divh=0 1is a potential of the type (1.4), say. We then cobtain the
solution of the problem (l1.1l) in the form

s (x) = Ink I,V (rx..) (2.3)

The solution (2.3) is obtained by analogy with finding the vortex component of the vec-
tor field /5/ when the particular solution of the system rotu(x) =v (x), divu (x) = 0, x = V, similar
to the problem (l.1), is sought by using a vector analysis identity, A = grad div —rotrot analog-
ous to (2.2) by assuming u=rotw and divw = 0.

It should be noted that the method recommended in /6/ that does not require satisfaction
of the condition divw =0, does not permit solution of the problem in the general case. Thus
if the solution is selected in the recommended form

w = —IIy (pv) + grad ¢, AP = div IIy, (pv)

then because Aw = —v the equality A grady = 0should be satisfied, which will result in a con-
dition on the vector v
grad div Iy, (pv) = 0

This is related to the fact that not every harmonic vector must be a potential.
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We find the tensor ! as a particular solution of the problem
Ink§(x) =0, divi(x) =v{x),xsV (2.4)

To do this, we decompose the vector vy into vortex v, and potential vg parts s/5/,and we
seek § in the form of the corresponding sum § = § -+ g, Because of the linearity of the
problem, (2.4) decomposed into two. We set §,= 2 defu,, where u, =rotz and v, = rot w. This
results in a particular solution in the form &, = 2 def (rot z), z = Ily (pW). Correspondingly, we
set &, = defu,, where u; = Vg and v, = V. This results in a particular solution of the form
%g = VV(P’ Q = Iy (P\P)

Let us introduce the notation:m:slp =% (), n-&|p=% &), %s(x) =% X — % &) — % (x).
By direct substitution it can be seen that the sum s + § will satisfy the equations in (2.1)
and there remains to find q as a solution of the internal problem (1.2) under the boundary
condition n . q (x) |r = %s (X). This latter reduces to (1.3), where the second equation in (1.2)
assures the existence of the solution /4/, which is unique for the tensor 4.

Therefore, the solution of the problem (2.1) is obtained in the form

n=s+3+q (2.5)

where $ is the incompatibility tensor, and § and q are strains. The tensor ( which is compat-
ible, can be represented in the form q = Ink h, which would result in the introduction of the
Definition 1.1.

If the required tensor N & C? (V). then also the tensors s, § & C® (V) since they are ob-

tained by differentiating potentials with densities of appropriate smoothness. Hence 8 and
& are single-valued functions and only the tensor ¢ can be the source of the multivaluedness
(for a multiconnected surface domain V).

The representation (2.5) simultaneously solves the problem of decomposing the arbitrary
tensor 1M into the incompatibility tensor § and the compatible tensor § = £ +gq, by also veri-
fying the validity of the Krdner decomposition m =s + & /1/ for finite domains. To do this
it is sufficient to take s from (2.3) and to define § as the difference M — s.

3. The operator Ink is a second-order matrix linear differential operator, and it is
consequently evident that there exist among the tensors those that annihilate them because of
single or repeated multiple application. Tensors also exist which do not annihilate them at
all /2/.

We call the tensor M (p) a nilpotent element of the operator Ink if a natural number p
exists such that InkPy(p) = 0. We call the least natural number the height of the elementm (p).

Compatible tensors have a height one, while the incompatible are greater than one. For
convenience, we do not ascribe the index p = oo to nilpotent elements. The operator Ink low-
ers while the operator Res raises the height of a nilpotent element by one.

We call the set of all nilpotent elements of height p the nilpotency class P - The pos-
sibility of decomposition by class is eivdent since the sets of elements of different height
do not intersect by pairs. Using tensors with components from polynomials of finite degree,
the example can be presented of a tensor of any previously assigned height. By comparing the
class with its height, all the classes can be numbered. Therefore, the operator Ink generat-
es the decomposition of a linear space of tensor fields into a countable set of nilpotency
classes.

The set of nilpotent tensors is a subspace of the linear tensor space. The nilpotency
class 1 is the kernel of the operator = Ink ,and therefore, is also a subspace. The remaining
classes are not subspaces since they do not contain the zero element.

We examine subgroups of an additive group of linear spaces of tensor fields. If neces-
sary, we predefine the appropriate sets by azero tensor so that they would form a subgroup.
Let H, § and K be subgroups of incompatible tensors 1), the tensors of incompatibility s,
and the tensors % with zero divergence. Furthermore, let H(p), S(p) and Q be subgroups of
nilpotent tensors 1% (p) of height not greater than p, incompatibility tensors s(p) of height P,
and compatible tensors q with zero divergence., We denote the remaining compatible tensors by

§; they are characterized by the property diviz0 and form the subgroup E (if they are
supplemented by the zero tensor). Evidently K=S@Q, H(1)=Q¢& &

In application to the tensor 1 (2)the representation (2.5) takes the form 7 (2) = s (2) +
q+ §=s(2) + n (1), and the direct sum

H2) =52 0QedE=5S@¢@H@) (3.1
corresponds to it because of the single-valuedness.
Lemma 3.1. InkS (2) =@, S (2) = ResQ.

Proof. The second relationship is cbtained from the first if the operator Resworks. To
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obtain the first relationship, we act on S(2) with the operator Ink andon Q with the operator
Res. From the definition of the height of an element we arrive at the inclusions Ink§(2)C
Q, Res @ C §{2), we act on the second with the operator Isk and compare with the first.

Lemma 3.2. There exists the isomorphism S (2) == (.

Proof. It follows from (3.1) and Lemma 3.1 that the operator Ink generates the homo-
morphism H (2)— QC H (1), where the kernel of the homomorphism is H (1), Then by the theorem on
homomorphisms, the isomorphism Q=~H (2)/H (1) holds. On the other hand, the isomorphism § (2)~
H(2)/H (1) follows from (3.1), which indeed proves the lemma.

Theorem 3.l. For any natural p>1 there exists an isomorphism S (p) ~ 0.
The assertion is proved by induction whose basis is Lemma 3.2. The method is analogous

to the proof of Lemma 3.1.
The following generalization of Lemma 3.1 can be obtained as a corollary:

Ink S(p) =S (p—1), S(p)=ResS(p—1),p>2

Theorem 3.2. For every natural number p>>{ the following representation is valid
Hp)=SEeoHpEp -1
Successive application of this theorem permits cbtaining the relationship

Hp)= & SO @ H()
from which the following result
WkH(p) =6 SO©Q Hp)=InkH(p+1)PE
H(p)—Res(@ (@ QBH ()

Only the subgroups E andS (co)take part in the invariant decomposition proposed in the
supplement to /2/. The subgroup Z consists of deformation tensorxs; they belong to the kernel
of the operator Ink and are not images of any tensors since they cannot be represented in the
form E==Ink%. The subgroup §{oc)consists of non-nilpotent incompatibility tensors and is
characterized by an automorphism generated by the operator Ink.

4, The height index will be omitted in the notation below, with the sole exception of
the special case p =1, We shall utilize the single-valued decomposition of the arbitrary
tensor 1 into the deviatior m* and spherical W parts

n=n*+7° (4-1)
We use the known identity /7/
$=VV. .98~ VV.}— .YV - Ay VVWirn —Atrnd (4.2)
Here § is the unit tensor, tr and V are operators of taking the trace of a tensor and of
covariant differentiation. If =se= 8, then V.s =0 and (4.2) takes the form #= As 4

VVirs — A trsé. Expanding % and s into the sum (4.1) and using the notation (%)* ==Ink s*,
{#)°=1Inks°, we obtain from the latter relationships

()% = As¥, (1 =TV trs® — 2 Atrsd 4.3
w* = As* -}—VVtrs—-—;}—Atrs&, u°=—%Atrs§ (4.4)
In the general case, we obtain from (4.2)
%":-%—VV--’q&—VV‘n—n-VV+An*+VVtr1}.——;—Atrn6 {4.5)
X (V. —Atrn) b
()* =VV. 08— VV.q* — q*. UV - An* (4.6)

(0)° =5~ (V¥ tr0° — Atrq°8)

We examine the action of the operator Ink on the deviator and spherical incompatibility
tensors. It follows directly from (4.4) that the operator Ink takes the incompatibility dev-
iator S* into the deviator #%. If s =8, then if follows from the condition V .gs =0 that
Vitrs® = 0, and then we obtain (#)* = (%)° = from (4.3), i.e.s°= Q.
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Therefore, no spherical incompatibility tensors exist; the deviator of the incompatibility
tensor is always different from zero.

Let S &S, we decompose it into the sum (4.1). Since s°& S then also s* & S. Hence,
either the incompatibility tensor is a deviatior or its deviatoric and spherical parts are not
incompatibility tensors. It follows from (4.4) and (4.5) that in the general cases of s& S
or n& H the operator Ink takes them over into % & K, which are neither deviators nor spher-
ical tensors.

It can be concluded on the basis of Lemma 1.1 that the operator Res restores the incom-
patibility deviator 8* from the deviator %*. The subspace of incompatibility deviators is
invariant for the operators Res and Ink. The deviator representation n* = s* L. E* ig
valid for an arbitrary deviatoric.

5. We decompose MEH into the sum (4.1) and we use the notation (%)* = Inkn*, (*)° =
Ink"’. Because of the linearity of the operator Ink, we have % = (x)* 4+ (x)°, and correspond-
ingly

K = Ink H, (K)* = Ink H*, (K)° = Ink H°, K = (K)* + (K)° (5.1)

We define the subgroup £ in H (1) in the form of the direct sum
E=FE*@ E° (5.2)

where E* and E° are subgroups of compatibile deviators e* and spherical tensors €°, The subgroup
E is a part of the kernel H (1)of the operator Inkwhich is absolutely compatible in the sense
that any element e&FE has compatible and deviator and spherical parts. The subgroup £ in-
tersects Q and E.

The subgroup E° is quite lean since it follows from (4.6) that VVtre® = 0. As is known
/8/, in a Cartesian system this is a linear function of the coordinates.

The single-valuedness of the decomposition (4.1) permits writing H (1) = H* (1) @ H° (1).
Since E C H (1), E* C H* (1), E°C H° (1), then taking account of (5.2) we conclude that the decom-
position

H (1)/E = H* (1)/E* @ H® (1)/E° (5.3)

is valid for the factor-group H/E

We consider the subgroups H®*(1) and H°(1). The gdeviators W* (1) = H* (1) can be compat-
ible (belong to E*)or incompatible. We form co-sets of incompatible deviators in the sub-
group E* and we take an arbitrary representative W* from each class. The set cbtained is
isomorphic to the factor-group H* (1)/E* and, therefore, itself forms a group He* C H*. we
proceed analogously with the subgroup H°(1). Therefore, the isomorphisms H* (1)/E* ~ H,*,
H°® (1)/E° ~ H,°>. Hence, by virtue of (5.3), a subgroup H, =~ H (1)/E exists in the subgroup H (1).
Correspondingly, the decompositions

Hy = Ho* @ He®, H* (1) = He* @ E*, H° (1) = H® @ E°, (5.4)
HY)=HipE
are valid.

It follows from the first relationship that every 1, & H,, which is represented in conform-
ity with (4.1) in the form 1, = m* 4+ 7°, pPossesses the property

Ink me° = —Ink ny* (5.5)

The subgroup Ho® consists of incompatible spherical tensors "W for which incompatible

deviators mMe* corresponding to the condition (5.5) exist. The imbeddings He* CC H* and H C
H° are cbvious. Meanwhile, it follows from the Lemma 5.1 to be presented below that the ele-
ments 1, are determined for any w,’ & H°. This permits the conclusion that H¢® = H°and cor-
respondingly, the first relationship in (5.4) can be written in the form H, = H¢* @ H°. It
hence follows that (K)°C (K)*.

Indeed, let us consider the action of the operator Ink on the subgroup in the last de-
composition. Mapping by using Ink transfers H° into (K)° and H,* into a certain subgroup (K)*,
here Ho C H (1) goes over into zero. But this means that the subgroups (K)° and (K),* consist
of mutually opposite elements, i.e., agree as sets and groups. Since (K)o* C (K)*,then (K)°C

(K)*. Hence, because of the last relationship in (5.1) we conclude that K = (K)*. Therefore,
there is proved the theorem.

Theorem 5.1. The set of tensor fields with zero divergence agrees with the set of
images (by using Ink) of tensor-deviators.

For incompatibility tensors this result is formulated in the form S = (§)* CC (K) *.

By condition (5.5) the element Mo in a given spherical part 1° is determined just to the
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accuracy of e* & E*. Indeed, (5.5) means that 1, = defu, and giving the spherical part of
the tensor is equivalent to the condition divu, = tr1”® for the vector u,. For a Single-
valued rvestoration of the vactor u, it is necessary to give its rotation and boundary condi-
tion also, which is associated with the slements e* and g*.. The potential part of the vector
u, is related to the change in volume /%/, hence, for definiteness, we set rotu, = 0. Any

1 = H° can be the spherical part of 1 eince a particular solution of the system divu, =

tr n°, rotu, == ( exists for any piecewise-continuously differentiable right side. Therefore there
is proved the lemma.

Lemma 5.1, For any piecewise-continuously differentiable spherical part % ¢ H in the

domain ¥ the expression ) .
T {x} = YV {x}, ¢ {x} = Hy {p & 4}

single-valuedly defines the element 7y € H,C H (1)

The vector u, = Vg is continucus and piecewise~continuously differentiable, meaning that
it is also single-valued in the whole space of functions.

The following theorem illustrates Theorem 5.1 and ¢an be of interest in connection with
problems of the mechanivs of incompressible media.

Theorem 5.2. Every piecewise continuously differentiable tensor v in the domain ¥V ecan
be decomposed into an ingompatible dewviator and a compatible part.

Proof. We define the element ny ¢ H, in the decomposition (4.1) by the sphexical part
% such that 1, = 17* - 9, and expressing v from this, substitute it into the decomposition

4.1 N =@ — 5" + %

This result was the basis for the method of eguivalent modelling of stresses in an in-
compressible material due to given incompatible strains./10/.

The anthor is grateful to V.V. Lokhin for discussing the results and for useful comments.
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